
Using Message Broker with EPICS:

SPX Controls Use Cases

Siniša Veseli
Software Engineer

AES / Software Services Group

EPICS Collaboration Meeting

October 5, 2013

EPICS Collaboration Meeting October 5, 2013

Outline

 About SPX

 Why Use Message Broker?

 SPX Controls Software

 Performance Measurements

 Summary

EPICS Collaboration Meeting October 5, 2013

2

Motivation

 EPICS/Message Broker Integration

 Performance Testing Results Involving EPICSv4

About SPX

 SPX: Short-Pulse X-ray project

 Originally one of the major goals of the APS Upgrade (APS-U)

- Addressed the need for intense, tunable, high-repetition rate,
picosecond x-ray pulses

- Ultimate goal: deliver short (2ps) x-ray pulses at 6.5 MHz

 Technically most complex part of the APS-U

- 2 cryomodules, each with 4 superconducting rf deflecting cavities
operating at 2815 MHz

- Must keep at minimum disturbance of the storage ring during user
operation

- SPX0 Systems: 2 cavity cryomodule, used for testing

 Not compatible with the recent APS-U direction (evaluating
incorporation of the Multi-bend Achromat Lattice)

EPICS Collaboration Meeting October 5, 2013

3

EPICS v4 Group Meeting September 10, 2013

4

SPX Controls Use Cases

 Keep up with LLRF Controllers (data rates of up to 15 MB/s per Controller)

 Access to complex data structures

 Real-time access to monitoring and diagnostics data to multiple users/tools
simultaneously

 Ability to access real-time data using Matlab/Octave

 Data storage services

 Cataloging services

 Fast logging system

5

EPICS Collaboration Meeting October 5, 2013

Why Message Broker?
 Advanced Message Queuing Protocol (AMQP) supports wide variety of

communications patterns and is frequently used in enterprise applications:

- Real-time feed or constantly updating data

- Advanced publish-and-subscribe

 Number of freely available AMQP broker/client implementations

 Can we leverage some of the available AMQP tools for EPICS applications, not as a
replacement for CA/PVA, but alongside those?

6

EPICS Collaboration Meeting October 5, 2013

7

EPICS Collaboration Meeting October 5, 2013

Plugin Performance: Testing

 LLRF4 Driver (SPX0) collects data in 32 KB “chapters” (16 I/Q waveforms with 512
integers)

 LLRF “data burst” size is determined by couple of EPICS PVs:

- Number of chapters to collect in a single ND array

- Number of ND arrays to collect and stream

 LLRF data bursts are associated with numerous ND Attributes (sent separately from
actual ND Array data)

 LLRF IOC has 3 streaming plugins:

- TCP (uses asyn v4.18 IP port driver, about 3.1K lines of support code)

- PVA (uses EPICS v4.3.0 RPC client, about 2.1K lines of support code)

- AMQP (Apache QPID v0.20, about 1.7K lines of support code)

 Client-side performance was measured in terms of time required to pack and send
one ND array data to a service running on a remote host over a gigabit network

 Measured times do not include service processing time, but in case of PVA they
include empty RPC response (less than 2 ms)

 Client machine: i7-3770@3.4GHz, 8GB RAM, 4 cores/8 threads, 1Gbit NIC

 8

EPICS Collaboration Meeting October 5, 2013

9

EPICS Collaboration Meeting October 5, 2013

Plugin Performance: Results

 Software can easily keep up with nominal data rates

 One second’s worth of LLRF ND Array data is processed in about:

 TCP Stream Plugin: 0.15 seconds

 PVA Stream Plugin: 0.30 seconds

 AMQP Stream Plugin: 1.85 seconds (would require 2 threads to keep up)

 PVA plugin performance is a factor of 6 better than AMQP plugin for streaming
arrays (monomorphic data): QPID v0.20 C++ APIs have no support for AMQP arrays
and require sending array elements via lists (very inefficient)

 Comparable PVA/AMQP plugin performance for ND attributes (polymorphic data)

 Preparing/sending initial stream message with about 200 LLRF ND Attributes
(approximately 16KB of structured data):

 TCP Stream Plugin: prepare/send message in under 0.5 milliseconds

 PVA Stream Plugin: 4-5 milliseconds to pack, 4-5 milliseconds to send; initial
call to RPC service takes 100-200 milliseconds

 AMQP Stream Plugin: 3-4 milliseconds to pack, 4-5 milliseconds to send

10

EPICS Collaboration Meeting October 5, 2013

Message Broker Approach: Lessons Learned

 Our Broker Choice: Apache QPID

- Open source, supports AMQP v1.0 and several earlier protocol versions

- Platform Support: Linux, OS X, JVM

- Extensive set of management tools and easy to use APIs

- Client Support: C/C++, Java, Python, Perl, PHP…

- Extensive documentation

- Excellent support for maps/dictionaries

- Extremely flexible and configurable

- Works “out of the box”

- Active user community, large user base

 QPID-related Issues:

- Inadequate API support results in subpar performance with arrays

- No client support for VxWorks

 General issues:

- Not all brokers support AMQP v1.0, which is not compatible with earlier
protocol versions

11

EPICS Collaboration Meeting October 5, 2013

Summary

 One can successfully integrate message-oriented middleware into EPICS-based
systems alongside CA/PVA

 Main advantages of this approach:

- Flexibility

- Ability to leverage large number of freely available (open source) tools and
frameworks

 AMQP is an open standard protocol that ensures interoperability between
different implementations of messaging providers/clients

 Broker choice impacts performance, platform/language/feature support, ease of
use, configuration options, etc.

12

EPICS Collaboration Meeting October 5, 2013

Future Work

 Utilize SPXRF Controls software/techniques to enhance existing diagnostics and
DAQ tools at APS

- Deploy Real-time Feedback IOC and accompanying services to production

Additional Slides

13

EPICS Collaboration Meeting October 5, 2013

SPX Controls Requirements

 The entire SPX system must be thoroughly integrated with the existing APS
storage ring controls, timing, and diagnostics

 Provide remote monitoring and control to all SPX subsystems consistent
with APS standards and existing OAG tools

- Data must be stored in SDDS (Self-Describing Data Sets) format

 Provide the necessary interfaces between the SPX and other APS systems
as required by the SPX needs (e.g., RTFB, MPS, Event System, etc.)

 Provide a real-time data processing environment for the SPX control
algorithms to ensure they can be executed at the necessary rate

 Provide thorough diagnostic information and tools to assist in quick
determination of SPX performance and post-mortem fault analysis
(required for maintaining high availability)

14

EPICS Collaboration Meeting October 5, 2013

Why Message Broker?

 Advanced Message Queuing Protocol (AMQP) supports wide variety of
communications patterns and is frequently used in enterprise applications

 Typical use cases:

- Real-time feed or constantly updating data

- Point-to-point messaging

- Advanced publish-and-subscribe

- Delivering messages when destination comes online

- Receiving constant status updates and sending large messages at the same
time and over the same network connection

- Transactional messaging

- Communication between diverse programming languages/operating systems

- Remote procedure call patterns

 Number of freely available AMQP broker/client implementations (QPID, ActiveMQ,
RabbitMQ, SwiftMQ…)

 Can we leverage some of the available AMQP tools for EPICS applications, not as
a replacement for CA/PVA, but alongside those?

15

EPICS Collaboration Meeting October 5, 2013

Advanced Message Queuing Protocol

 Originated in 2003 (JP Morgan & Chase, London UK)

 Open standard, v1.0 became OASIS standard in 10/2012

 Wire-level protocol, mandates behavior of messaging providers and clients to
assure interoperability between different implementations

 Few protocol details:

- Basic unit of data: frame

- Nine frame bodies used to initiate, control and tear down message transfer
between two peers

- Messages on a link flow in one direction only

- All message transfers must be acknowledged (for reliability guarantees)

- Multiple links can be combined in a session

- Application creates (immutable) bare messages that have a body and an
optional list of standard (e.g., message id) and application-specific properties

- Messages may be annotated by intermediaries (via message headers)

- Application data can be in any form/encoding: one can use AMQP for sending
self-describing data

 16

EPICS Collaboration Meeting October 5, 2013

AMQP vs PVA

 PV Access: natural evolution of Channel Access, designed with EPICS applications
in mind (for signal monitoring, scientific data services)

 Data type support:

- Both protocols support all basic (primitive) types and strings

- AMQP also supports Decimal32/64/128, TimeStamp, and Uuid

- AMQP supports described types (primitive type + descriptor), PVA supports
introspection data (describes type of user data item)

- PVA supports Unions, AMQP does not

- PVA supports BitSets (finite sequence of bits)

- Both support composite types (structures)

- Both support Arrays (sequence values of a single type)

- AMQP supports (polymorphic) Lists and Maps (polymorphic mapping from
distinct keys to values)

 PVA channel: connection to a single named resource that resides on some server
(client-server model)

 AMQP type systems involve broker as intermediary: messages on a link flow in one
direction only

17

EPICS Collaboration Meeting October 5, 2013

AMQP vs PVA

 Protocols utilize different channel/link management

 Both protocols have a concept of control vs. application messages

 PVA application message headers are fixed size (8-byte long)

 PVA has predefined messages types (e.g., channel get, channel put, channel put-
get, channel monitor, channel array, etc.)

 PVA servers must broadcast beacon messages over UDP (beacons are used for
announcing new servers and server restarts); PVA channel search messages are
typically sent over UDP, while data transmission uses TCP

 AMQP is built on top of TCP

 AMQP has built in support for transactions and security

 PVA: optimized for performance, geared towards simplicity and efficiency

 AMQP: more flexibility, more complexity

18

EPICS Collaboration Meeting October 5, 2013

19

EPICS Collaboration Meeting October 5, 2013

